4.7 Inverse Trigonometric Functions

Recall that in order for a function to have an inverse function, it must be one-to-one (it must pass the Horizontal Line Test). Therefore, in order for the function, $y = \sin x$ to have an inverse, we must restrict the domain.

When restricting the domain to $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, the following properties hold.

On the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

- 1. $y = \sin x$ is increasing.
- 2. The range of $y = \sin x$ is [-1, 1].
- 3. $y = \sin x$ is one-to-one.

* inverse graphs are in textbook Pg. 378-380

So, restricting the domain of $y = \sin x$ to $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ gives a unique function called the **inverse sine function** denoted

by

 $y = \arcsin x$ or $y = \sin^{-1} x$

Find B between

Definition of Inverse Sine Function

The inverse sine function is defined by

 $y = \arcsin x$ if and only if $\sin y = x$

where $-1 \le x \le 1$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$. The domain of $y = \arcsin x$ is [-1, 1], and the range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

The notation $\sin^{-1} x$ is consistent with the inverse function notation $f^{-1}(x)$.

Note that $\sin^{-1} x$ means the inverse sine function and does not mean $\frac{1}{\sin x}$

The $\arcsin x$ notation is read as "the arcsine of x" and comes from the association of a central angle with its intercepted $arc \ length$ on a unit circle. In other words, $\arcsin x$ means the angle (or arc) whose sine is x. Both notations, $\arcsin x$ and $\sin^{-1} x$, mean the same thing and are commonly used in mathematics to find an angle.

When restricting the domain to $0 \le x \le \pi$, the following properties hold.

On the interval $[0,\pi]$:

- 4. $y = \cos x$ is decreasing.
- 5. The range of $y = \cos x$ is [-1, 1].
- 6. $y = \cos x$ is one-to-one.

T I

So, restricting the domain of $y = \cos x$ to $0 \le x \le \pi$ gives a unique function called the inverse cosine function denoted by

 $y = \arccos x$ or $y = \cos^{-1} x$

Similarly, you can define an **inverse tangent function** by restricting the domain of $y = \tan x$ to the interval

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right).$$

Definitions of the Inverse Trigonometric Functions			
Function	Domain	Range	19
$y = \arcsin x$ if and only if $\sin y = x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$	三三, 之
$y = \arccos x$ if and only if $\cos y = x$	$-1 \le x \le 1$	$0 \le y \le \pi$	[0, 17]
$y = \arctan x$ if and only if $\tan y = x$	$-\infty < x < \infty$	$-\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2}$	(-三,三)

on arcsin (13) In Exercises 1–12, find the exact value.

looking for a in the correct restrictions that

1.
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{1}{3}$$
 2. $\sin^{-1}\left(-\frac{1}{2}\right)$

$$2. \sin^{-1}\left(-\frac{1}{2}\right)$$

5.
$$\cos^{-1}\left(\frac{1}{2}\right) = \prod_{3}^{1}$$

$$510^{-1}(-\sqrt{2})$$
7. $tan^{-1}(-1) = -\frac{1}{4}$
8. $cos^{-1}(-\frac{\sqrt{3}}{2})$
9. $sin^{-1}(-\frac{1}{\sqrt{2}}) = -\frac{11}{4}$
10. $tan^{-1}(-\sqrt{3})$

8.
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

9.
$$\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$$

10.
$$\tan^{-1}(-\sqrt{3})$$

11.
$$\cos^{-1} 0 = \frac{\pi}{2}$$

In Exercises 13-16, use a calculator to find the approximate value. Express your answer in degrees.

13.
$$\sin^{-1}(0.362)$$

15.
$$tan^{-1}(-12.5)$$

16.
$$\cos^{-1}(-0.23)$$

In Exercises 17-20, use a calculator to find the approximate value. Express your result in radians.

17.
$$tan^{-1}(2.37)$$

19.
$$\sin^{-1}(-0.46)$$

20.
$$\cos^{-1}(-0.853)$$